
University of Manchester
School of Computer Science
Third Year Project Report

Using Prediction to Improve PROPHET Routing

Author:
Thomas Nixon

Supervisor:
Dr Nick Filer

Abstract

This report presents the design, implementation and evaluation of an
extension to PROPHET routing, based on prediction of encounters between
devices. To facilitate this, a network simulator with a novel event-based ar-
chitecture is designed and implemented. A scheme for predicting encounters
between devices based on k-nearest-neighbour regression is implemented,
and evaluated using the simulator; it is found to be effective, but too slow
to use in a routing protocol.

A simpler and faster, but less general predictor is implemented, and
integrated into the PROPHET routing protocol. This is evaluated in the
simulator, and found to be effective in decreasing the overall latency and
number of packets dropped.

University of Manchester
School of Computer Science
Third Year Project Report

Using Prediction to Improve PROPHET Routing

Author:
Thomas Nixon

Supervisor:
Dr Nick Filer

Acknowledgements

I would primarily like to thank my supervisor Nick for his
support and guidance throughout this project. Thank you for
encouraging me to work on interesting problems, consistently
managing to motivate me when I had given up, and for defending
my work despite glaring deficiencies.

Thanks to my friends, who not only put up with my incoher-
ent ramblings, but managed to provide many a valuable insight.

1

Contents

1 Introduction 6
1.1 Outline . 7

2 Background 8
2.1 Connections . 8
2.2 Role . 8
2.3 Classification . 9

2.3.1 Infrastructure Networks 9
2.3.2 Mesh Networks . 9
2.3.3 Delay Tolerant Networks 10

2.4 Issues Raised by Delay Tolerant Networking 10
2.4.1 Routing . 10
2.4.2 Security . 10
2.4.3 Power usage . 10
2.4.4 Implementation and Applications 11
2.4.5 Testing . 11
2.4.6 Delay and Unreliability 11

2.5 Routing in Delay Tolerant Networks 11
2.5.1 Epidemic . 11
2.5.2 PROPHET . 12

3 Tools 14
3.1 Simulation Framework . 14

3.1.1 Core Event Simulator 15
3.1.2 Event System . 15

3.2 Example Simulation Set-Up 15
3.2.1 Connection Dataset 16
3.2.2 Connection Dataset 16
3.2.3 Splitter . 16
3.2.4 Router . 17
3.2.5 CsvWriter . 17
3.2.6 AddTime . 17
3.2.7 Statistics Logger . 17

2

3.3 Datasets . 18
3.3.1 Reality . 18

4 Extending PROPHET with Prediction 19
4.1 Using Regression for Prediction 19

4.1.1 Time Features . 20
4.1.2 Regression Methods 21
4.1.3 Testing Methodology 23
4.1.4 Results . 23
4.1.5 Evaluation . 25

4.2 Week-In-Week-Out Approach 25
4.2.1 Prediction . 29
4.2.2 Routing . 29
4.2.3 Maintaining the Predictability Log 30
4.2.4 Testing . 30

5 Future Work 35
5.1 Prediction . 35

5.1.1 Feature Selection . 35
5.1.2 Weighting for Weeks 35

5.2 Routing . 36
5.2.1 Devalue PROPHET 36
5.2.2 Evaluation . 36

3

List of Figures

3.1 Example simulation set-up . 16

4.1 Plot showing the distribution of predictabilities sampled dur-
ing a simulation. 21

4.2 Simulation set-up for evaluating prediction 23
4.3 Plot showing the correlation between predictabilities and KNN

predictions. 24
4.4 Predictability plot between two sample devices over several

weeks. 27
4.5 Plot showing the correlation between predictabilities and cor-

responding predictabilities from one week ago. 28
4.6 Latency density estimates for each router. 32
4.7 Number of hops packets take for each router. 33

4

List of Tables

4.1 Features derived from an observation time. 20

5

Chapter 1

Introduction

Today, mobile phones have become abundant and inexpensive, causing a
revolution in the way we communicate; not being tied to a land-line, post
box or personal computer allows us to be where we want to be without
sacrificing the ability to communicate with anyone on earth.

Mobile phones are widely used, but the way they typically communicate
has a major drawback in that all communication takes place via network
infrastructure such as cell towers and Wi-Fi hotspots. This may not seem
like a big problem to many of the people reading this report, but to many
it is.

In developing countries, there is often very little or no infrastructure
available, making communication difficult. In countries with oppressive gov-
ernments, messages travelling over network infrastructure can be intercepted
and censored, making it difficult to (for example) organise political protests
without the knowledge of the authorities. Communication has become a
basic human right and should be treated as such.

Nearly all modern mobile phones implement short-range networking tech-
nologies such as BlueTooth and Wi-Fi; these technologies are arguably
under-utilised and could eventually, with enough work, become much more
widely useful as the foundations of a new paradigm in network technology:
delay tolerant networking.

In a traditional network, packets are only delivered if there is a complete
unbroken path from the source to the destination. In a delay tolerant net-
work, packets reach their destination by being stored and opportunistically
forwarded to other devices, allowing packets to reach their destination even
if a complete path from the source never exists in the lifetime of the packet.
This comes at the expense of latency, but allows communication to occur
where it would otherwise be impossible.

When to forward and when to store a packet is decided by a routing
algorithm. There are many published routing algorithms for use in delay
tolerant networks; this report presents a new approach, implemented as an

6

extension to an existing routing algorithm.

1.1 Outline

Chapter 1: Introduction This chapter. The motivation for delay toler-
ant networking is presented.

Chapter 2: Background An overview of various networking technologies
and architectures is given. Delay tolerant networking is defined, and
its challenges identified. Two existing routing algorithms, Epidemic
and PROPHET are introduced.

Chapter 3: Tools Discusses the requirements, design and implementation
of a simulation framework. Introduces the Reality dataset.

Chapter 4: Extending PROPHET with Prediction A technique for
predicting activity in PROPHET routed networks is developed and
evaluated through a series of experiments. A routing algorithm utilis-
ing these predictions is presented and evaluated.

Chapter 5: Evaluation Evaluation and possible improvements of to the
work presented in this report.

7

Chapter 2

Background

For the purpose of this report, a computer network can be modelled as a
graph whose topology changes over time; the nodes of this graph are devices
which have a role, and the edges are connections.

2.1 Connections

A connection allows two or more devices to communicate. Once a connection
has been established, any connected device can publish a message containing
some data, which all other devices can receive.

Typical types of network connection:

Ethernet An Ethernet connection connects two or more devices together
over a physical wire.

BlueTooth A BlueTooth connection allows two devices to communicate via
short-range (typically 10m, but up to up to 100m) using radio signals.
Although radio signals are inherently a broadcast technology (that is,
other devices in range cannot be prevented from receiving messages),
encryption is used to create logical connections between two devices.

Wi-Fi Wi-Fi connections are similar to BlueTooth connections in that they
operate over radio, and create virtual connections for two devices to
communicate over, but has a significantly longer range.

GSM GSM connections allow mobile phones to communicate with base
stations using radio frequency, with ranges of a few kilometres.

2.2 Role

The role of a device denotes what function it performs on the network. A
device may perform one or more roles.

8

Endpoint An endpoint device acts to send messages to other devices, and
receive messages from other devices. Typical endpoint devices are
mobile phones, desktop computers and servers.

Message Router A device acting as a message router is connected to
several other devices, and forwards messages between these devices.
When a message is received, a router looks at the destination address
of that message, and decides what to do with it. It may:

Forward the message via another network connection, either to the
destination, or another router device.

Discard the message if it does not know what to do with the mes-
sage.

Store the message if it cannot forward the message to the destina-
tion immediately, but may be able to do so in the future.

2.3 Classification

By restricting this general description of a computer network, we can de-
scribe three common types of computer network.

2.3.1 Infrastructure Networks

In in infrastructure network, a device is either an endpoint or a router,
never both. The topology of infrastructure networks rarely change, and
when they do this usually causes some disruption of service. Message routers
never store messages, except for short periods of time to alleviate congestion
(queueing). Infrastructure networks tend to have a well connected core
of routers for redundancy and bandwidth reasons, surrounded by trees of
routers and endpoints to minimise the amount of wiring needed, at the cost
of redundancy and bandwidth.

2.3.2 Mesh Networks

In a mesh network, devices are simultaneously endpoints and message routers,
but do typically not store messages except for queueing. Devices in a mesh
network are typically mobile devices such as laptop computers or mobile
phones, communicating over short range wireless networks such as Wi-Fi or
BlueTooth. The topology of a mesh network is typically fairly constant once
in operation, but has no well defined structure – devices communicate with
any other in-range devices.

Mesh networks are typically set up to allow several devices to communi-
cate where there is a lack of traditional network infrastructure.

9

2.3.3 Delay Tolerant Networks

Delay tolerant networks are similar in architecture to mesh networks, except
that message routers are allowed to store messages for future forwarding.
This kind of network is most useful in situations where there is low overall
connectivity, but the topology of the network changes frequently.

The primary advantage that delay tolerant networking has over mesh
networking is that a message that starts at device a can be received by
device b even if there is never a complete path of connections from a to b.

Delay tolerant networking raises several issues, discussed in the next
section.

2.4 Issues Raised by Delay Tolerant Networking

2.4.1 Routing

Making routing decisions in a delay tolerant network is much more difficult
than in an infrastructure network or a mesh network, as the usefulness of
routing decisions made now is affected by changes in the topology of the
network in the future.

2.4.2 Security

In an infrastructure network, the devices which perform routing are typi-
cally owned by the network operator, and are therefore considered secure –
messages from endpoint devices are routed through these devices, and users
trust them not to read or alter these messages. In a mesh or delay tolerant
network, the devices performing routing are also owned by users of the net-
work, and so are not considered to be trusted. Since messages must travel
via untrusted devices to reach their destination, it is imperative that some
form of encryption and cryptographic signing is performed on the packets,
to stop the intermediate devices from reading or altering these messages.

2.4.3 Power usage

When a routing decision is being made for a packet in a delay tolerant
network, the device making the decision does often not know of a complete
route to the destination, and so must use a heuristic, taking into account
the previous, current, and predicted connectivity of devices around it. When
one device decides to forward a message to another, it uses some amount of
power to do so. Since devices typically used in delay tolerant networks are
running on battery power, conserving energy is important.

When making routing decisions, the device must consider both power ef-
ficiency and prompt delivery of messages. This is a trade-off, as if a message

10

is forwarded more, it is more likely to be delivered, but may use excessive
amounts of power in the process.

2.4.4 Implementation and Applications

Networking stacks on many common computers are not designed to be used
in this way. As an example, on many common mobile phones it is not
possible for a piece of software to connect to another phone using BlueTooth
without it asking the user to enter a pairing code; this obviously makes delay
tolerant networking, which relies on constantly creating new connections
more difficult to implement. It is possible to work around these kinds of
restrictions by modifying the operating system, but this would definitely
slow the adoption of such a technology.

2.4.5 Testing

In order to evaluate the effectiveness of a delay tolerant networking technol-
ogy, it is desirable to run computer simulations to gauge the overall efficiency.
In order to do this, one needs a simulator, of which there are many freely
available, and some data to run it on, which presents more of a problem.

Datasets typically take the form of a connectivity log for a number of
devices (listing the start time and duration of each connection between de-
vices), and possibly a log of messages sent between these devices. Datasets
of this type are expensive to collect, and so few are available.

2.4.6 Delay and Unreliability

In order for messages in a delay tolerant network to be delivered, they will
by necessity be delayed by a variable and unpredictable amount of time, or
not delivered at all; this style of networking is therefore inappropriate for
use in situations where this is not acceptable.

2.5 Routing in Delay Tolerant Networks

To me, message routing seems like an interesting thing to work on, since
there if no obvious best approach; I decided to learn more about this.

There are several established approaches to routing in delay tolerant
networking, described below.

2.5.1 Epidemic

Epidemic routing[VB+00] gets it’s name from the way diseases spread in
a community; instead of diseases we have messages, and instead of disease
carriers, we have devices.

11

Epidemic is probably the simplest working routing scheme in existence;
each device stores a set of messages that it has seen. When two devices meet,
they exchange messages such that both devices end up with the same set of
messages (the union of the two previous sets). A device sends a message by
adding it to it’s own set of messages. A device receives a message when a
message addressed to it is found in it’s set of messages.

Advantages

• Guaranteed to deliver messages as early as possible.

• Simple to implement.

Disadvantages

• Extremely inefficient. Epidemic routing does not try to direct packets
towards their destination – it just tries to deliver messages to as many
devices as possible in the hope that they will reach their destination.
This results in more forwards (using power), and larger buffer sizes
(using memory and power).

2.5.2 PROPHET

The Probabilistic ROuting Protocol using History of Encounters and Transi-
tivity (PROPHET)[LDS03] routing protocol uses the fact that the probabil-
ity of a connection occurring between two devices is not constant to inform
routing decisions.

Each device a in a PROPHET-routed network stores, for each other
device b a predictability value, P (a, b). The value P (a, b) is a measure of the
likelihood of device a being able to deliver a message to device b.

Predictability values are assumed to be zero if not known, and are up-
dated using the following rules:

• When device a encounters device b, the predictabilities are updated
such that:

P (a, b) = P (a, b)old + (1− P (a, b)old)× Pinit

Where Pinit is a constant. This takes care of increasing the delivery
predictabilities for nodes that often encounter each other.

• Delivery predictabilities are aged over time, such that devices that
haven’t had an encounter in a long time have lower predictabilities:

P (a, b) = P (a, b)old × γk

Where γ is a constant, and k is the time since the last encounter.

12

• Predictabilities have a transitive property; if a is able to deliver a
messages easily to b, and b is able to deliver messages easily to c, then
if follows that a should easily be able to deliver messages to c. Upon
a encountering b, delivery predictabilities are updated as follows:

P (a, c) = P (a, c)old + (1− P (a, c)old)× P (a, b)× P (b, c)× β

Where β is a constant.

When device a has the opportunity to forward a message destined for c
to device b, it only forwards if:

P (b, c) > P (a, c)

This way, messages are only forwarded to devices that have a higher chance
of delivering the message to the destination.

Advantages

• Causes far fewer forwards compared to epidemic routing, and thus uses
less power.

Disadvantages

• Maintaining the predictabilities costs both storage space and power,
though this is usually offset by increased routing efficiency.

• PROPHET routing may miss opportunities to deliver messages that
epidemic may be able to take advantage of – it is a heuristic.

13

Chapter 3

Tools

In order to do any work on message routing in delay tolerant networks, it
is necessary to have some way to evaluate the performance of a routing al-
gorithm. In the ideal world, we would do this by installing our software
onto a large number of mobile devices owned and used by real people going
about their every-day lives, and having them use it to communicate. Unfor-
tunately, this is usually not much more than a pipe-dream, as there are still
many problems to be solved with this technology before it becomes useful
to a wide audience.

To resolve this situation, simulations are usually used. A network simu-
lator simulates the connections between devices and the users of the devices
which send messages, and logs relevant data for later analysis.

3.1 Simulation Framework

There are several network simulators freely available under permissive open
source licences, however I was not generally impressed by the amount of
work required to get data into and out of these simulators, and the amount
of effort required to implement a new routing protocol. I therefore decided
to write my own simulation framework; this of course was more work overall,
but ended up being an interesting part of this project in it’s own right.

Python was chosen as the implementation language, as it is very flexi-
ble and has a large and high quality library of modules; this made it quick
to try things out, without writing a lot of boiler-plate code, or implement-
ing standard algorithms. Although python is an interpreted language, the
performance was good enough for our purposes, and was even better when
using the experimental PyPy[PyP12] interpreter.

14

3.1.1 Core Event Simulator

Everything that happens in the simulator is controlled by a single global
clock, which runs as fast as it can; because the amount of work to do in each
step of the clock is not constant, this clock has little relation to real world
time.

At the core of the simulator is the Simulator class. This manages the
global time, and ensures that callbacks added to it are run at the correct
time.

Callbacks take the form (t, c), where t is the time to run c, a function
taking a single argument – the Simulator instance. These callbacks are ran
in increasing order of time. If two callbacks have the same time, they are
ran in the order that they were added to the simulator.

In addition to individual callbacks, it is possible to add callbacks that
are repeatedly called at a given interval. These are called when

t mod i = 0 ∧ t > tfirst

where t is the current timestep, i is the given interval, tfirst is the time of
the first non-interval event.

3.1.2 Event System

Just using the above core event simulator works well enough for small simu-
lations with only a few components, but for more complicated set-ups, with
more components, this becomes more complicated. Ideally, we should be
able to design generic components in isolation with similar interfaces, then
join them together in a high-level way.

In order to make this a possible, a system of event sources, sinks and
filters was designed, modelled after UNIX pipes.

Each event in the system consists of a time, and a map from field names
to values. There are no restrictions on the field names or types; the only
standard field name is ‘type’, a string denoting the type of event.

Event source objects can emit events, and event sink objects can receive
events. Event filter objects are both event sinks and event sources, so can
both emit and receive events. Event sources can be ‘chained’ onto event
sinks, meaning that all events emitted by the event source are received by
the event sink at the time of the event, no matter where it was emitted.

3.2 Example Simulation Set-Up

Figure 3.1 shows the architecture of a simple simulation run that reads in
connection and messaging datasets, and produces a log of messages sent and
received in CSV format, and a file of statistics (including, for example, the
number of messages forwarded by each node).

15

Connection
Dataset

Message
Dataset

Statistics
Logger

AddTime CsvWriter

Splitter

...

Router 1

Router N

Figure 3.1: Example simulation set-up

The components of this simulation are as follows:

3.2.1 Connection Dataset

This is an event emitter, which should emit events with the following keys
each time a message is to be sent:

type "message".

left The ID of the device sending the message.

right The destination ID of the message.

id A unique ID for the message, to allow the devices to differentiate between
otherwise identical messages.

3.2.2 Connection Dataset

This is an event emitter which emits an event every time a device goes in
range of, or out of range of another device, with the following keys:

type "connect" or "disconnect".

left The ID of the device which recorded this event.

right The ID of the device which was sighted.

3.2.3 Splitter

Splitters are event filters, and ultimately pass events to a set of inner filters,
managed by the splitter. Upon initialisation, the splitter is given two pa-
rameters: the inner class (in this case, a router class), and a list of keys to
split on (in this case, a single element list containing "left").

When a splitter receives an event (from the outside), it tries to find an
inner filter identified by the values in the event for the keys which the splitter
is to split on (in this case, the value of the "left" key of the event). If a

16

matching inner filter is not found, it is created; the event is then passed
unmodified to this filter.

In this case, this has the effect of creating a routing filter for each value
of "left" in the dataset, and therefore each device.

When a new inner filter is created, it is given a reference to the splitter,
so that it can communicate with the other filter instances, as well as the
event that created it, so that it can determine it’s own id, for example.

Whenever an inner filter emits an event, the splitter re-emits it, after
adding the keys/values that identify the inner filter.

3.2.4 Router

The routers receive connection and messaging information from the datasets
via the splitter, and use this to make routing decisions. Routers exchange
messages via the splitter. When a router receives a message for which it is
the destination, it emits an event with type="message_received", so that
the effectiveness of the router can be analysed.

Additionally, in the case of a PROPHET router, the first time another
device is seen, an event with the following keys is emitted:

type "p_value"

right The ID of the device that was seen.

p A zero-argument function that returns the predictability of this device at
the current timestep.

This allows other components to easily sample predictabilities without hav-
ing references to the routers.

3.2.5 CsvWriter

Given a file to write to, and a list of column/key names, this simply writes
the specified keys of each event as a row in a CSV file.

3.2.6 AddTime

The AddTime filter simply writes the event time of received events to a
specified key, and re-emits them. This is more generally useful than it may
seem, but in this case is simply there to make the CSV writer slightly simpler
and more general.

3.2.7 Statistics Logger

At the end of the simulation, the routers all emit events with type="stats",
containing statistics gathered while they are running. The statistics logger
writes these to a single CSV file for later analysis.

17

3.3 Datasets

Data about connections and messages is needed to drive the simulation. To
be useful for our purposes, a dataset must:

• Be collected from a reasonable number of devices.

• Be collected for a large amount of time (at least a few weeks).

• Be collected in an environment where some behaviours are predictable.

These requirements are difficult and expensive to meet, so there is only
one dataset currently available that meets these: the Reality Mining dataset.

3.3.1 Reality

In the 2004, 100 subjects at MIT were given mobile phones pre-installed
with data collection software, which they used for 9 months. The phones
collected times of BlueTooth device sightings, calls placed and received, text
messages sent and received, and cell towers seen. [EP05]

Importantly, the test subjects were students and faculty at MIT; this is
ideal as this kind of environment is often quite predictable.

18

Chapter 4

Extending PROPHET with
Prediction

PROPHET works well, but there is one obvious area to work on if it is to be
improved – it’s use of historic data. The routing algorithm potentially has
access to years of connectivity and messaging information, and yet it each
device only stores a single number for each other device detailing how likely
it is to be able to deliver messages to that device; this is surely a missed
opportunity.

One fundamental problem with delay tolerant networking is that devices
do not know what is going to happen in the future – if they did, they
could have the same message delivery rate as Epidemic routing, while only
transferring messages between devices that are needed to get get them to
their destination.

In real life, these devices are often carried by people, who tend to have
highly predictable behaviour in one way or another. Students taking the
same course may meet at the same time every week for lectures, but may
hardly meet otherwise. Workers travel to and from work at the same time
every day, and tend to do predictable things once there.

We may not know exactly what is going to happen in the future, but we
could predict what is going to happen with reasonable accuracy, this infor-
mation could help a device to make better forwarding decisions, hopefully
improving overall efficiency.

4.1 Using Regression for Prediction

To enable prediction of PROPHET predictability values, each device may
keep a log of these values for each other device, sampled every few minutes.
Each of these logs can be thought of as a function

f(t) = p

19

where t is the time of an observation, and p is the predictability at t.
The domain of f is all times in the past.

In order to predict a predictability value in the future, we must find a
function fp(t) which is defined for all values of t. This can be done using
regression analysis.

Regression analysis techniques can be used to fit a function to a set
of data points in n dimensions; this is often used to provide insight into
a dataset (for example, by fitting a line to a set of points), and to allow
extrapolation past the bounds of an experiment.

In this case, we want to relate time to predictability values. This is
a complex function; far too complex for any known method of regression
analysis to fit to while providing meaningful extrapolation.

4.1.1 Time Features

From a time value, we can calculate several features, as described in table
4.1. These features are designed to capture the way that people typically
describe repeating events.

Name Description

year Year number (eg. 2012)
month Month number (January = 1, February = 2 etc.)

day Day number in the month
minute Minutes since the start of the day

dow Day number (Monday = 1, Tuesday = 2 etc.)
odd wk Week number in year modulo 2

Table 4.1: Features derived from an observation time.

As an example of these in use, these features could be used to represent
an event that occurs every other Friday night between 6:00 and 7:00 as

dow = 5

∧ (60× 18) ≤ minute ≤ (60× 19)

∧ odd wk = 0

, or an event that occurs on the second Tuesday of every month between
12:00 and 12:30 as

dow = 2

∧ (60× 12) ≤ minute ≤ (60× 12.5)

∧ odd wk = 0

∧ 8 ≤ day ≤ 14

20

0

20

40

60

80

100

120

0.0 0.2 0.4 0.6 0.8 1.0
Predictability

de
ns

ity

Figure 4.1: Plot showing the distribution of predictabilities sampled during
a simulation. Note that predictabilities above zero barely register.

Recurring events are much more naturally expressed in terms of these
features than raw time values, so it follows that it should be much easier to
fit a model to a predictability log if the time values are pre-processed into
these features.

4.1.2 Regression Methods

There are plenty of methods for performing regression, however most are
unsuitable for use in this situation, because of both the non-linearity of
the problem, and because of the high bias of predictabilities towards 0 –
the average predictability recorded during a typical simulation run is just
0.0056, which is treated as noise by most regression methods. Figure 4.1
illustrates just how severe this problem is.

One regression method that seems plausible in this situation is k-nearest-
neighbour regression.

21

K Nearest Neighbour

A k-nearest-neighbour regression[Kra11] model is simply the set of all points
to perform regression on. The prediction for an example data point is simply
some combination of it’s k closest data points.

The k closest data points are chosen to minimise their euclidean distance
from the example. This can be done in one of two ways:

Brute Force Iterate through each stored data points, calculating the eu-
clidean distance for each, and taking the k points with the smallest
distance.

k-dimensional Trees Store all the points in a k-dimensional1 tree[Ben75],
and query that to find the closest points. A k-d tree is a binary tree
where each node is a point in k dimensional space, and both stores
the point in the data structure, and serves to split up the space into
two parts by a k − 1 dimensional hyperplane. For a given node in the
tree, all children on the left are on one side of the hyperplane, and all
children on the right are on the other. The hyperplane associated with
each node is always perpendicular to an axis; which axis is determined
by d mod k, where d is the depth of the node in the tree. k-d trees are
usually balanced, such that each node has roughly the same number
of children in it’s left and right subtrees.

The SciPy library for Python contains a fast implementation of k-d
tree building and searching[Sci12]; this was used to implement this
prediction method.

k-d tree searching is generally considered to be logarithmic in the num-
ber of points[FBF77]2, however the SciPy implementation is limited in
that new points cannot be inserted without rebuilding the entire tree,
incurring a large overhead.

To get around this, the implemented predictor divides all points to be
searched into ‘bins’, each of which contain data for one day, and has it’s
own k-d tree representing that data. This scheme reduces the size of
the tree that needs to be rebuilt after each sample is added (increasing
the efficiency of adding new samples), while increasing the number of
trees that need to be queried to make a prediction (decreasing the
efficiency of prediction). This is a trade-off, but results in an overall
efficiency improvement.

Once the k closest data points to the example have been found, they
need to be combined to find a final prediction; this is usually done by taking
the mean.

1This is a different k than in k-nearest-neighbour.
2The algorithm that SciPy uses is a mystery, but empirical tests show that it is faster

than using brute-force search, if only because it is implemented in C.

22

Connection
Dataset

CsvWriterSample

Splitter

...

Router 1

Router N

AddTime

Splitter

...

Predictor 1

Predictor N

Figure 4.2: Simulation set-up for evaluating prediction

4.1.3 Testing Methodology

In order to test a prediction method, it is necessary to test it against real-
world data. To do this, the PROPHET routing protocol was ran on all
devices in the Reality dataset, and the predictabilities generated are sampled
every 5 minutes; these samples are passed into a predictor for each pair of
devices. Every 5 minutes, the predictors are queried for a prediction 1 hour
into the future. Both the sampled predictabilities and the predictions are
logged to a table, with each row containing a sample, and a prediction for
the same time as the sample. Figure 4.2 shows the architecture of this test
in the simulator.

The higher the performance of a predictor, the more correlated these two
values should be; in a perfect predictor these two variables would always be
equal.

4.1.4 Results

Figure 4.3 shows the aggregated predictability and prediction pairs, collected
as described above for k = 5. In an ideal predictor, these pairs would contain
perfectly correlated values, and so a straight line with positive gradient
would be visible – clearly not what we have here. A few observations:

23

(0,0.1]

(0.1,0.2]

(0.2,0.3]

(0.3,0.4]

(0.4,0.5]

(0.5,0.6]

(0.6,0.7]

(0.7,0.8]

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

30887 386 237 183 180 153 162 165 222 2402

8670 143 81 80 56 64 74 70 81 838

9988 168 105 103 77 89 87 93 119 1006

4566 67 39 46 49 30 54 37 77 564

8680 109 77 83 66 69 83 85 119 1082

1828 30 27 23 27 23 34 28 54 256

2374 46 24 21 18 18 30 26 57 510

8065 94 55 58 38 42 48 48 59 13251

(0,0.1] (0.1,0.2] (0.2,0.3] (0.3,0.4] (0.4,0.5] (0.5,0.6] (0.6,0.7] (0.7,0.8] (0.8,0.9] (0.9,1]
Predictability

P
re

di
ct

io
n

Freq

●

●

●

●

54.59815

403.42879

2980.95799

22026.46579

Figure 4.3: Plot showing the correlation between predictabilities and KNN predictions.

24

• The predicted values have a maximum of around 0.8. This is probably
caused by the presence of a large number of near-zero predictabilities
in the data, pulling the average down. This is not a problem for
our purposes, as as the routing algorithm using these predictabilities
(described in section 4.2.2 on page 29) never compares predictions
against predictabilities.

• There are obviously a significant number points where the prediction is
wrong (a mix of false negatives around (1, 0), and false positives around
(0, 0.8)), however there is also a large number of correct predictions
(true negatives around (0, 0) and true positives around (1, 0.8)). Al-
though they are not perfect, these predictions would probably still be
useful to a routing algorithm, as the knowledge of a possible encounter
in the future is more useful than no knowledge at all.

During routing, a false negative would result in a message not being
forwarded in a situation where it may have been beneficial, and so
would not cause any gain or loss in efficiency compared to PROPHET.
A false positive would result in a packet being forwarded in a situation
where it is not beneficial, reducing the efficiency.

It is possible to use the Pearson product-moment correlation coefficient[RN88]
(PPMCC) to measure the correlation between predictabilities and corre-
sponding predictions. The PPMCC of two variables is 1 if they are perfectly
positively correlated, −1 if they are perfectly negatively correlated, and 0
if there is no correlation. The PPMCC for these two variables is 0.460,
showing a weak positive correlation as expected.

4.1.5 Evaluation

The KNN approach seems to give reasonably good predictions, but is slow
enough that any routing algorithm using it would be far too slow to test. A
more efficient implementation may make this fast enough to be usable, but
this approach has another major pitfall that makes it not worth the effort
to implement.

When routing a message, it would be useful to know the maximum pre-
dictability between now and the time of expiry (based on the TTL and time
of sending) of the packet. This is not something easy to do with this predic-
tor without sampling many times in that interval; an entirely new approach
is needed.

4.2 Week-In-Week-Out Approach

This new approach to prediction uses the following two observations to in-
crease efficiency:

25

• Most predictable events seem to occur on a weekly basis. Figure 4.4
shows predictabilities between two devices over 7 weeks; there ap-
pear to be several cases where ‘spikes’ in predictability happen at the
same time in several weeks. Figure 4.5 shows a plot of predictabilities
against predictabilities from one week ago, which shows many of the
same traits as the KNN-based predictor. These two variables actually
have a slightly higher PPMCC at 0.475 (vs. 0.460 for KNN).

• Most predictability samples are zero, or very close to zero; it would
be beneficial to be able to filter these out without affecting accuracy,
to save storage space and power. It does not make sense to filter out
these low predictabilities in a regression model, as this would alter the
shape of the function; in the KNN predictor, if no predictabilities less
than Pmin are added to the model, all predictions will be greater than
or equal to Pmin.

26

0.0
0.2
0.4
0.6
0.8

0.0
0.2
0.4
0.6
0.8

0.0
0.2
0.4
0.6
0.8

0.0
0.2
0.4
0.6
0.8

0.0
0.2
0.4
0.6
0.8

0.0
0.2
0.4
0.6
0.8

0.0
0.2
0.4
0.6
0.8

W
eek 1

W
eek 2

W
eek 3

W
eek 4

W
eek 5

W
eek 6

W
eek 7

0 1 2 3 4 5 6
Time since start of week (days)

P
re

di
ct

ab
ili

ty

Figure 4.4: Predictability plot between two sample devices over several weeks.

27

(0,0.1]

(0.1,0.2]

(0.2,0.3]

(0.3,0.4]

(0.4,0.5]

(0.5,0.6]

(0.6,0.7]

(0.7,0.8]

(0.8,0.9]

(0.9,1]

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

668468 1401 872 757 642 661 658 758 1019 10665

1526 49 19 21 14 17 10 12 17 169

951 25 16 14 12 7 5 6 15 100

828 22 5 17 14 13 17 9 10 98

688 9 15 11 13 5 13 10 9 82

732 18 10 9 10 10 8 8 10 81

724 20 18 9 15 10 17 15 16 105

813 13 6 15 7 14 9 17 19 99

1091 17 16 12 15 9 20 11 45 154

10874 130 83 75 57 59 79 68 104 13820

(0,0.1] (0.1,0.2] (0.2,0.3] (0.3,0.4] (0.4,0.5] (0.5,0.6] (0.6,0.7] (0.7,0.8] (0.8,0.9] (0.9,1]
Predictability

P
re

di
ct

io
n

Freq

●

●

●

●

54.59815

1096.63316

22026.46579

442413.39201

Figure 4.5: Plot showing the correlation between predictabilities and corresponding predictabilities from one week ago.

28

4.2.1 Prediction

In this scheme each device a stores a set L(a, b) of pairs (t, p), where p is the
predictability observation at time t for device b. These observations have
the following restrictions:

• Samples are taken every i seconds:

t mod i = 0

• Only the most recent n weeks of samples are stored:

t > tnow − n× 7× 24× 60× 60

Where tnow is the current simulator time.

• Only probabilities greater than Pmin are stored:

p > Pmin

Rather than calculating a predictability estimate for a specific time, this
predictor calculates an estimate of the maximum predictability between two
times, ta and tb:

P ′(a, b, ta, tb) =
n∑

w=1

max

{
p | (t, p) ∈ L(a, b)

∧ ta < (t+ w × 7× 24× 60× 60) < tb

}
That is, for each week stored in the log, calculate the maximum pre-

dictability between ta and tb in that week (the same days and times, just
shifted into that week), summing across all weeks.

The idea behind this is to represent both the predictability, and our
confidence that this predictability will occur; if a device has been seen at
the same time the last 3 weeks, the predictability estimate will be 3 times
higher than if it was just seen at this time last week.

With some careful implementation, this method is fast enough to use to
help inform routing decisions. All observations are stored in a hash table
indexed by date, so to predict using n weeks of data, the predictor only
needs to actually look at n days of data.

4.2.2 Routing

A packet destined for device c, that expires at texp is allowed to be forwarded
from device a to device b at time tnow if:

P (b, c) > P (a, c)

∨ P ′(b, c, tnow, texp) > P ′(a, c, tnow, texp)

29

The first part of this, P (b, c) > P (a, c), is the same as in PROPHET
routing – if b is currently a better carrier of the message than a, then forward
to it. The second part deals with predictions – if b is predicted to be better
than a at delivering the message before the packet expires, then forward to
it.

This is best implemented using short-circuiting logic – checking the pre-
dictability is much quicker than checking the prediction, so avoiding calcu-
lating it if possible is a good idea.

4.2.3 Maintaining the Predictability Log

The predictability log must be kept up to date for this to be effective; this
means that a new predictability sample must be added every i seconds if
the predictability is greater than Pmin.

It is possible to implement this by simply sampling each predictability
every i seconds, and updating if the sample is greater than Pmin, however this
slows down the simulation significantly; calculating the predictably requires
several floating point operations, and may need to be preformed up to n2

times every i seconds in a simulation with n nodes.
To speed up the simulation, the predictor has two states – logging and

not logging; when in the logging state, the predictability log is updated every
i seconds, and vice versa. The following rules are applied when updating
L(a, b):

• When the predictor is initialised, it does not start logging predictabil-
ities.

• When device a contacts device b, the predictor starts logging, as the
predictability for this pair is now increasing.

• When a predictability value is to be logged, if P (a, b) < Pmin, and a is
not currently connected to b, this predictor stops logging, as the pre-
dictability has gone below the threshold, and will continue to decrease.

• When the predictability is updated by the transitive property, if P (a, b) >
Pmin, this predictor starts logging if it was not already.

Applying these rules ensures that all the predictor is always in the logging
state when the predictability is above the threshold, and allows it to stop
when it drops below, resulting in a marked gain in efficiency.

4.2.4 Testing

Strategy

Using this prediction method, predicted values are not ‘compatible’ with the
predictabilities, and the prediction is done on a time range rather than a

30

single time, so it is not possible to evaluate the prediction method by it’s
self – the improved routing method and predictor must be evaluated as a
whole.

To do this, simulation was used. The simulation logs the times that each
message was sent and received; this allows us to analyse the distribution of
latency, and find the proportion of messages delivered successfully.

Three routing schemes are compared:

prophet Unmodified PROPHET.

prophet_predict PROPHET with prediction, described above.

prophet_manual PROPHET with additional random forwards. The num-
ber of forwards that PROPHET and PROPHET with prediction per-
form are saved; this routing scheme is simply PROPHET, but with
enough additional random message forwards so that it does the same
number of forwards as PROPHET with prediction.

The prophet_manual routing scheme is useful, as it allows us to bet-
ter compare prophet and prophet_predict. prophet_predict will always
forward more packets than prophet and so will almost certainly reduce the
latency and increase the delivery ratio compared to prophet; what we re-
ally want to know is how effective those extra forwards being performed are
at getting messages to their destination. Comparing prophet_predict to
prophet with additional random forwards allows us to determine this.

Each routing scheme was ran on the Reality connection dataset, and the
same random message dataset, with 1,000,000 messages at random times,
and with random source and destination devices.

Results

Figure 4.6 shows the distribution of latency across all received messages
for each router. While prophet_predict makes a small improvement in
the number of messages received compared to prophet across all latencies,
the comparison against prophet_random is more telling. prophet_random

makes virtually no improvement compared to prophet, and yet makes the
same number of additional forwards as prophet_predict. prophet_pre-

dict is clearly doing something right, but quantifying how effective it is is
beyond the scope of this project.

Figure 4.7 shows the number of message received at their destination
after taking a given number of hops for each router. The shape of this
graph is caused by two things:

• Some packets that were delivered successfully by prophet get to their
destination quicker by using a larger number of hops in prophet_¬
predict. This is most visible at one hop, where the total number of

31

0

10

20

30

40

50

60

20 40 60 80 100
Latency (minutes)

co
un

t

router

prophet

prophet_predict

prophet_manual

Figure 4.6: Latency density estimates for each router. The lines for
prophet_predict and prophet_manual are directly on top of each other.

32

0

500

1000

1500

1 2 3 4 5 6
Number of Hops

C
ou

nt

router

prophet

prophet_predict

prophet_manual

Figure 4.7: Number of hops taken by each packet to reach it’s destination
for each router.

33

packets received actually decreases. These packets were still received
by the destination, but took a larger number of hops to get there.

• Some packets that were not delivered by prophet are delivered suc-
cessfully by prophet_predict. This increases the number of packets
received at each number of hops, apart from one hop. This is because
if a packet can be delivered in one hop, it will definitely be delivered
by prophet.

This routing algorithm is more effective than PROPHET, but not by a
large amount. This is arguably held back by the quality of the prediction
being used – with better prediction, a similar technique may be able to make
a more significant improvement.

34

Chapter 5

Future Work

This section presents possible improvements to the various aspects of this
project.

5.1 Prediction

A major part of this project was the design of two methods for predict-
ing future predictabilities in a PROPHET routed network. Some possible
improvements to these schemes:

5.1.1 Feature Selection

When using k-nearest-neighbour prediction, not all features are equally rel-
evant, which can affect negatively prediction – if one of the features is not
correlated with the predictability in any way, it provides no benefit but can
skew the predictions.

Feature selection is a technique to alleviate this problem, and can be
used to find a scaling factor for each feature, or a subset of all features. This
could improve the performance of the predictor, both in terms of speed and
effectiveness.

We found that using only the time since the start of the week as a single
feature was similarly effective to a large number of features. This was true
in the environment recorded by the Reality dataset, but is probably not true
in general; some environments may show more day-to-day similarity than
week-to-week, or may exhibit a mixture of both. It would be much more
general if each device could perform feature selection for each other device
to decide how best to perform prediction for that device.

5.1.2 Weighting for Weeks

In the current predictor, if a device was seen at the appropriate time one
week ago (and not before that), the prediction will be the same as if the

35

device was seen at the appropriate time three weeks ago. This is perhaps
counter-intuitive, but on the other hand, there is no obvious function from
a vector of maximum predictabilities for the previous n weeks to a single
prediction value. It may be possible to learn this function by performing re-
gression between the predictability vectors and the observed predictabilities
for this time.

5.2 Routing

Some possible improvements to prediction-aware routing:

5.2.1 Devalue PROPHET

In the extended PROPHET routing protocol, a packet destined for device
c, that expires at texp is allowed to be forwarded from device a to device b
at time tnow if:

P (b, c) > P (a, c)

∨ P ′(b, c, tnow, texp) > P ′(a, c, tnow, texp)

This means that it always forwards if PROPHET would. This is possibly
not the best idea, as PROPHET may well forward in cases where it is
inefficient to do so. It may be worth removing PROPHET entirely:

P ′(b, c, tnow, texp) > P ′(a, c, tnow, texp)

Or making it so that PROPHET only forwards if the predictability for
b is significantly greater:

P (b, c) > P (a, c) + ∆p

∨ P ′(b, c, tnow, texp) > P ′(a, c, tnow, texp)

Where ∆p is an initialisation constant.

5.2.2 Evaluation

I feel that the evaluation of the extended PROPHET routing protocol could
have been much more rigorous. It may have been useful to:

• Compare several runs on different messaging datasets – they are gener-
ated randomly, so it would be useful to check that prophet_predict

isn’t just performing better than prophet due to some quirk of the
random number generation.

36

• Pre-compute the best path each message could have taken to reach
it’s destination using Epidemic routing, and compare the forwarding
decisions made by the routers to these paths – if a router makes the
best possible routing choices more often, it should have a higher overall
performance.

• Test the routing protocols in other environments – the Reality dataset
was recorded in an academic environment, and so we have only shown
extended PROPHET routing to be effective in this environment. Datasets
for other environments may have to be generated, as there are not
many recorded ones available, and those that are tend to be too short
for use in a routing simulation that requires historic data.

• Test the routers on a messaging dataset that more closely resembles
real life. People do not send messages randomly, so we should not be
testing against random messages. The Reality dataset does include a
log of messages sent and received for each device, but unfortunately
there are too few messages to produce any reliable results. It would
be interesting to generate a larger messaging dataset based on the
patterns seen in the Reality dataset.

37

Bibliography

[Ben75] Jon Louis Bentley. Multidimensional binary search trees used for
associative searching. Commun. ACM, 18(9):509–517, September
1975.

[EP05] Nathan Eagle and Alex (Sandy) Pentland. CRAWDAD data set
mit/reality (v. 2005-07-01). Downloaded from http://crawdad.

cs.dartmouth.edu/mit/reality, July 2005.

[FBF77] Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel.
An algorithm for finding best matches in logarithmic expected
time. ACM Trans. Math. Softw., 3(3):209–226, September 1977.

[Kra11] Oliver Kramer. Unsupervised K-Nearest Neighbor Regression.
July 2011.

[LDS03] Anders Lindgren, Avri Doria, and Olov Schelén. Probabilistic
routing in intermittently connected networks. SIGMOBILE Mob.
Comput. Commun. Rev., 7(3):19–20, July 2003.

[PyP12] PyPy. Pypy website. http://pypy.org/, 2012. Accessed 29 April
2012.

[RN88] Joseph Lee Rodgers and W. Alan Nicewander. Thirteen ways
to look at the correlation coefficient. The American Statistician,
42(1):pp. 59–66, 1988.

[Sci12] SciPy. scipy.spatial.ckdtree class. http://docs.scipy.org/
doc/scipy/reference/generated/scipy.spatial.cKDTree.

html, 2012. Accessed 29 April 2012.

[VB+00] A. Vahdat, D. Becker, et al. Epidemic routing for partially con-
nected ad hoc networks. Technical report, Technical Report CS-
200006, Duke University, 2000.

38

